ACCS LABORATORY CANNABIS & BEYOND CC 721 Cortaro Dr. Sun City Center, FL 33573 www.acslabcannabis.com			Relief Supps - Batch 16R Sample Matrix: CBD/HEMP Derivative Products (External Use)	
FL License # CMTL-0003 CLIA No. 10D1094068		ate of Analysis		
FORIA WELLNESS 2440 Junction Place, #102 Boulder, CO 80301	Batch # RSP001_016R Batch Date: 2021-02-08 Extracted From: hemp	Test Reg State: Oregon	Production Facility: Huds Production Date: 2021-0	
Order # FOR210210-040061 Order Date: 2021-02-10 Sample # AAAZ269	Sampling Date: 2021-02-15 Lab Batch Date: 2021-02-15 Completion Date: 2021-02-18	Initial Gross Weight: 122.400 g		
LOZI. Z. 10 DP RODE OIL P AMAZEO EX Non. nor	Tested	Listeria Monocytogenes Passed Passed		

	Potency -	11			Tested	🔦 Pote	ncy Summary
	Specimen Weigh				(HPLC/LCMS)	Total CBD 8.892%	Total THC 0.005%
Analyte CBD	Dilution (1:n) 1.000	LOD (%) 0.000054	LOQ (%) 0.001	Result (mg/g) 88.720	(%) 8.872	Total CBG 0.016%	Total CBN 0.023%
CBN CBDA CBG	1.000 1.000 1.000	0.000014 0.00001 0.000248	0.001 0.001 0.001	0.233 0.224 0.156	0.023 0.022 0.016	Other Cannabinoids 0.005%	Total Cannabinoids 8.941%
CBC Delta-9 THC	1.000 1.000	0.000018 0.000013	0.001 0.001	0.051 0.051	0.005 0.005		
THCV Delta-8 THC CBGA	1.000 1.000 1.000	0.000007 0.000026 0.00008	0.001 0.001 0.001		<loq <loq <loq< td=""><td></td><td></td></loq<></loq </loq 		
CBDV THCA-A	1.000 1.000 1.000	0.000065 0.000032	0.001 0.001		<loq <loq <loq< td=""><td></td><td></td></loq<></loq </loq 		

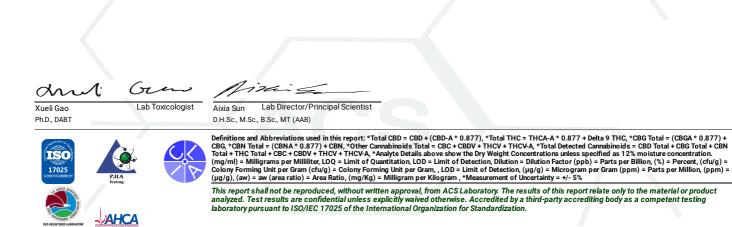
Gun drit \sim

Lab Toxicologist Xueli Gao Ph.D., DABT

Product I mage

ISO 17025

Ainin


 Aixia Sun
 Lab Director/Principal Scientist

 D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBGA * 0.877) + CBG, *CBN Total = (CBCA * 0.877) + CBN, *Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Intal Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Intal Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Intal Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Intal Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Intal Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Intal Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Intal Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Intal Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Intal Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Intal Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC + THCV-A, *Intal Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC + THCV-A, *Intal Detection, Dilution = Dilution = Calcon Parts per Billion, (%) = Percent, (cfug) = Colony Forming Unit per Gram (cfug) = Colony Forming Unit per Gram, LOD = Limit of Detection, (µg/g) = Microgram per Gram (ppm) = Parts per Billion, (%) = Milligram per Killogram, *Measurement of Uncertainty = +/-5%

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.


					f Supps - Batch Sample Ma CBD/HE Derivative Produ (External U	trix: IMP ucts	
FL License	o.800025015 e#CMTL-0003 10D1094068		ate of Analysis ompliance Test				
	ELLNESS tion Place, #102 0 80301	Batch # RSP001_016R Batch Date: 2021-02-08 Extracted From: hemp	Test Reg State: Oregon		Production Facility Production Date: 2		
Order # FOR2 Order Date: 2 Sample # AA		Sampling Date: 2021-02-15 Lab Batch Date: 2021-02-15 Completion Date: 2021-02-18	Initial Gross Weight: 122.400 g				
ų.	Listeria Monocytog Specimen Weight: 1012.950 mg : 1.000	jenes					Passed (qPCR)
Analyte	Action Level (cfu/g)	Result					
Listeria Monoc		Absence in 1 g					
	Pathogenic SAE (q	PCR)					Passed
S	Specimen Weight: 225.740 mg						(qPCR)
Dilution Factor:					Devult		
Analyte	Action Level (cfu/g)	Result (cfu/g)	Analyte	Action Level (cfu/g)	Result (cfu/g)		
Aspergillus (Fla Niger, Terreus)	vus, Fumigatus, 1	Absence in 1g	E.Coli Salmonella	1 1	Absence in 1g Absence in 1g		

	ORY BEYOND C aro Dr. Center, FL 33573 cannabis.com	OMPLIA	NCE						CBD/H tive Prod External	lucts	
FL Licens	lo. 800025015 se # CMTL-0003 10D1094068			Certi		ate of Ana ompliance Test	alysis				
	/ELLNESS ction Place, #102 0 80301	Bat	tch # RSP001_01 tch Date: 2021-0: tracted From: hen	2-15		Test Reg State	e: Oregon			ty: Hudson Hen 2021-02-10	ıp
rder#FOR rderDate: ample#A	210223-030019 2021-02-23 ABA372	Lab	mpling Date: 202 b Batch Date: 202 mpletion Date: 2	21-02-24	13	Initial Gross V	Weight: 122.4	00 g			
H	Heavy Metals Passed	☆ *	Mycotoxins Passed		٥ ^۳	Pesticides Passed	Д	Residual Solvents Passed	•••	pH Level Tested	
otency	Panel Not Inclu	Ided									
žn	1: Gen		Aira		_						
	л: Ссла Lab Toxicol	•		ector/Print	cipal Scie	entist					
۲۰۰۰ Ieli Gao D, DABT	•	D.I	H.Sc., M.Sc., B.Sc., M	T (AAB)							A * 0.977
	•	D.I D.I CB To CB CB CB	H.Sc., M.Sc., B.Sc., M finitions and Abbrevia G, *CBN Total = (CBN tal + THC Total + CBC gg/ml) = Milligrams pe lony Forming Unit per	T (AAB) ations used i IA * 0.877) + CBDV + TI er Milliliter, L r Gram (cfu/	n this repo + CBN, *0 HCV + THO OQ = Lim g) = Color	ort: *Total CBD = CBD + (C ther Cannabinoids Total = CV-A, *Analyte Details abo it of Quantitation, LOD = 1	CBC + CBDV + TH ve show the Dry V Limit of Detection , LOD = Limit of	Total THC = THCA-A * 0.877 + ICV + THCV-A, *Total Detected Weight Concentrations unless so J Dilution Factor (pp Detection, (µg/g) = Microgram	l Cannabinoid pecified as 1 b) = Parts pe	s = CBD Total + CB0 2% moisture conce r Billion, (%) = Perc	Total + (ntration. ent, (cfu/

721 Co Sun Cit www.acs License FL Lice		BIS & HE D COMPI 3			cate of Analysis		ief Supp Batch Sample M CBD/H Derivative Proc (External	atrix: EMP ducts	
2440 Ju	WELLNESS nction Place, #10 CO 80301	2	Batch # RSP001_ Batch Date: 2021 Extracted From: h	-02-15	Test Reg State: Oregon		Production Facili Production Date:		
Order Dat	OR210223-030019 e: 2021-02-23 AABA372		Sampling Date: 2 Lab Batch Date: 2 Completion Date:	021-02-24	Initial Gross Weight: 122.400 g				
H Dilution Fac	Heavy Meta Specimen Weight: 24								Passed (ICP-MS)
Analyte	ctor. 2.000	LOQ (ppm)	Action Level (ppm)	Result (ppm)	Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	
Arsenic (As Lead (Pb) Total Cont		0.1 0.1 Jone Detected	1.5 0.5	<loq <loq< td=""><td>Cadmium (Cd) Mercury (Hg)</td><td>0.1 0.1</td><td>0.5 3</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	Cadmium (Cd) Mercury (Hg)	0.1 0.1	0.5 3	<loq <loq< td=""><td></td></loq<></loq 	
Dilution Fac	Mycotoxins Specimen Weight: 16	54.760 mg							Passed (LCMS)

Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	
Aflatoxin B1	0.006	0.02	<loq< td=""><td>Aflatoxin B2</td><td>0.006</td><td>0.02</td><td><loq< td=""><td></td></loq<></td></loq<>	Aflatoxin B2	0.006	0.02	<loq< td=""><td></td></loq<>	
Aflatoxin G1	0.006	0.02	<loq< td=""><td>Aflatoxin G2</td><td>0.006</td><td>0.02</td><td><loq< td=""><td></td></loq<></td></loq<>	Aflatoxin G2	0.006	0.02	<loq< td=""><td></td></loq<>	
Ochratoxin A	0.012	0.02	<loq< td=""><td></td><td></td><td></td><td></td><td></td></loq<>					

1200 . <u>_</u> Lab Director/Principal Scientist Aixia Sun

Xueli Gao Ph.D., DABT

D.H.Sc., M.Sc., B.Sc., MT (AAB) Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBNA * 0.877) + CBN, *Other Cannabinoids Total = CBC + CBDV + THCV + THCV+A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCVA, *Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Millitgr. (Do = Limit of Quantitation, LOD = Limit of Detection, Dilution = Dilution Factor (pb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Colony Forming Unit per Gram, LOD = Limit of Detection, (µg/g) = Microgram per Gram (ppm) = Parts per Million, (ppm) = (µg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

Page 2 of 4

ACCS LABORATOR 721 Cortaro Sun City Cen www.acslabcan	Dr. iter, FL 33573						ef Supp Batch Sample M CBD/H Derivative Proc (External	atrix: EMP lucts		
License No. 8 FL License # CLIA No. 10	CMTL-0003				ate of Analysis					
FORIA WEL 2440 Junctio Boulder, CO 8	n Place, #102	Co Batch # RSP001_016R Batch Date: 2021-02-15 Extracted From: hemp			Test Reg State: Oregon		Production Facility: Hudson Hemp Production Date: 2021-02-10			
Order # FOR210 Order Date: 202 Sample # AABA	1-02-23		Sampling Date: 2 Lab Batch Date: 2 Completion Date:	021-02-24	Initial Gross Weight: 122.400) g				
Li Pa	sticides								Passed	
		60 m m							(LCMS/GCMS)	
	cimen Weight: 164.7	ou mg								
Dilution Factor: 9.1	04	LOQ	Action Level	Result		LOQ	Action Level	Result		
Analyte		(ppm)	(ppm)	(ppm)	Analyte	(ppm)	(ppm)	(ppm)		
Abamectin		0.028	0.3	<loq< td=""><td>Acephate</td><td>0.03</td><td>3</td><td><loq< td=""><td></td></loq<></td></loq<>	Acephate	0.03	3	<loq< td=""><td></td></loq<>		
Acequinocyl		0.048	2	<loq< td=""><td>Acetamiprid</td><td>0.03</td><td>3</td><td><loq< td=""><td></td></loq<></td></loq<>	Acetamiprid	0.03	3	<loq< td=""><td></td></loq<>		
Aldicarb		0.03	0.1	<loq< td=""><td>Azoxystrobin</td><td>0.01</td><td>3</td><td><loq< td=""><td></td></loq<></td></loq<>	Azoxystrobin	0.01	3	<loq< td=""><td></td></loq<>		
Bifenazate		0.03	3	<loq< td=""><td>Bifenthrin</td><td>0.03</td><td>0.5</td><td><loq< td=""><td></td></loq<></td></loq<>	Bifenthrin	0.03	0.5	<loq< td=""><td></td></loq<>		
Carbaryl		0.01	0.5	<loq< td=""><td>Chlorfenapyr</td><td>0.048</td><td>0.1</td><td><l0q< td=""><td></td></l0q<></td></loq<>	Chlorfenapyr	0.048	0.1	<l0q< td=""><td></td></l0q<>		
Chlorpyrifos		0.03	0.1	<loq< td=""><td>Clofentezine</td><td>0.03</td><td>0.5</td><td><l0q< td=""><td></td></l0q<></td></loq<>	Clofentezine	0.03	0.5	<l0q< td=""><td></td></l0q<>		
Coumaphos		0.03	0.1	<loq< td=""><td>Cyfluthrin</td><td>0.03</td><td>1</td><td><l0q< td=""><td></td></l0q<></td></loq<>	Cyfluthrin	0.03	1	<l0q< td=""><td></td></l0q<>		
Cypermethrin		0.03	1	<loq< td=""><td>Daminozide</td><td>0.03</td><td>0.1</td><td><l0q< td=""><td></td></l0q<></td></loq<>	Daminozide	0.03	0.1	<l0q< td=""><td></td></l0q<>		
Diazinon		0.03	0.2	<loq< td=""><td>Dichlorvos</td><td>0.03</td><td>0.1</td><td><l0q< td=""><td></td></l0q<></td></loq<>	Dichlorvos	0.03	0.1	<l0q< td=""><td></td></l0q<>		
Dimethoate Ethoprophos		0.03 0.03	0.1 0.1	<loq <loq< td=""><td>Dimethomorph Etofenprox</td><td>0.03 0.03</td><td>3 0.1</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	Dimethomorph Etofenprox	0.03 0.03	3 0.1	<loq <loq< td=""><td></td></loq<></loq 		
Etnopropnos Etoxazole		0.03	1.5	<loq <loq< td=""><td>Fenhexamid</td><td>0.03</td><td>0.1</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	Fenhexamid	0.03	0.1	<loq <loq< td=""><td></td></loq<></loq 		
Fenoxycarb		0.03	0.1	<l0q <l0q< td=""><td>Fenpyroximate</td><td>0.03</td><td>2</td><td><loq <loq< td=""><td></td></loq<></loq </td></l0q<></l0q 	Fenpyroximate	0.03	2	<loq <loq< td=""><td></td></loq<></loq 		
Fipronil		0.03	0.1	<l0q< td=""><td>Flonicamid</td><td>0.03</td><td>2</td><td><l0q< td=""><td></td></l0q<></td></l0q<>	Flonicamid	0.03	2	<l0q< td=""><td></td></l0q<>		
Fludioxonil		0.03	3	<l0q< td=""><td>Hexythiazox</td><td>0.03</td><td>2</td><td><l00< td=""><td></td></l00<></td></l0q<>	Hexythiazox	0.03	2	<l00< td=""><td></td></l00<>		
Imazalil		0.03	0.1	<loq< td=""><td>Imidacloprid</td><td>0.03</td><td>3</td><td><l0q< td=""><td></td></l0q<></td></loq<>	Imidacloprid	0.03	3	<l0q< td=""><td></td></l0q<>		
Kresoxim Methyl		0.03	1	<loq< td=""><td>Malathion</td><td>0.03</td><td>2</td><td><l0q< td=""><td></td></l0q<></td></loq<>	Malathion	0.03	2	<l0q< td=""><td></td></l0q<>		
Metalaxyl		0.01	3	<loq< td=""><td>Methiocarb</td><td>0.03</td><td>0.1</td><td><loq< td=""><td></td></loq<></td></loq<>	Methiocarb	0.03	0.1	<loq< td=""><td></td></loq<>		
Methomyl		0.03	0.1	<loq< td=""><td>Mevinphos</td><td>0.03</td><td>0.1</td><td><loq< td=""><td></td></loq<></td></loq<>	Mevinphos	0.03	0.1	<loq< td=""><td></td></loq<>		
Myclobutanil		0.03	3	<loq< td=""><td>Naled</td><td>0.03</td><td>0.5</td><td><l0q< td=""><td></td></l0q<></td></loq<>	Naled	0.03	0.5	<l0q< td=""><td></td></l0q<>		
Oxamyl		0.03	0.5	<loq< td=""><td>Paclobutrazol</td><td>0.03</td><td>0.1</td><td><loq< td=""><td></td></loq<></td></loq<>	Paclobutrazol	0.03	0.1	<loq< td=""><td></td></loq<>		
Parathion-methyl		0.048	0.1	<loq< td=""><td>Pentachloronitrobenzene</td><td>0.03</td><td>0.2</td><td><l0q< td=""><td></td></l0q<></td></loq<>	Pentachloronitrobenzene	0.03	0.2	<l0q< td=""><td></td></l0q<>		
Permethrin		0.03	1	<loq< td=""><td>Phosmet</td><td>0.03</td><td>0.2</td><td><loq< td=""><td></td></loq<></td></loq<>	Phosmet	0.03	0.2	<loq< td=""><td></td></loq<>		
Piperonylbutoxide		0.03	3	<loq< td=""><td>Prallethrin</td><td>0.03</td><td>0.4</td><td><loq< td=""><td></td></loq<></td></loq<>	Prallethrin	0.03	0.4	<loq< td=""><td></td></loq<>		
Propiconazole		0.03	1	<loq< td=""><td>Propoxur</td><td>0.03</td><td>0.1</td><td><loq< td=""><td></td></loq<></td></loq<>	Propoxur	0.03	0.1	<loq< td=""><td></td></loq<>		
Pyrethrins		0.03	1	<loq< td=""><td>Pyridaben</td><td>0.03</td><td>3</td><td><l0q< td=""><td></td></l0q<></td></loq<>	Pyridaben	0.03	3	<l0q< td=""><td></td></l0q<>		
Spinetoram		0.03	3	<loq< td=""><td>Spiromesifen</td><td>0.03</td><td>3</td><td><loq< td=""><td></td></loq<></td></loq<>	Spiromesifen	0.03	3	<loq< td=""><td></td></loq<>		
Spirotetramat		0.03	3	<loq< td=""><td>Spiroxamine</td><td>0.03</td><td>0.1</td><td><loq< td=""><td></td></loq<></td></loq<>	Spiroxamine	0.03	0.1	<loq< td=""><td></td></loq<>		
Tebuconazole		0.03	1	<loq< td=""><td>Thiacloprid</td><td>0.03</td><td>0.1</td><td><loq< td=""><td></td></loq<></td></loq<>	Thiacloprid	0.03	0.1	<loq< td=""><td></td></loq<>		
Thiamethoxam		0.03	1	<loq< td=""><td>Trifloxystrobin</td><td>0.03</td><td>3</td><td><loq< td=""><td></td></loq<></td></loq<>	Trifloxystrobin	0.03	3	<loq< td=""><td></td></loq<>		

drit Gra Lab Toxicologist Xueli Gao

1200 Lab Director/Principal Scientist Aixia Sun

None Detected

D.H.Sc., M.Sc., B.Sc., MT (AAB)

Ì⊆

Ph.D., DABT

Total Contaminant Load (TCL)

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBAA * 0.877) + CBA, *CBN Total = CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = 12% moisture concentration. (mg/m) = Milligrams per Milligram, DO = Limit of Detection, Diutino = Diution Factor (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram, (LOD = Limit of Detection, (µg/g) = Microgram per Gram (ppm) = Parts per Million, (ppm) = (µg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

Page 3 of 4

Sun Cit	ATORY CANNABIS & HE BEYOND COMP rtaro Dr. y Center, FL 33573 abcannabis.com					F Supp Batch Sample M CBD/H rivative Proc (External	atrix: EMP lucts	
FL Lice	• No . 800025015 nse # CMTL-0003 o. 10D1094068							
2440 Ju	WELLNESS nction Place, #102 C0 80301	Batch # RSP001_ Batch Date: 2021 Extracted From: h	-02-15	Test Reg State: Oregon		oduction Facili oduction Date:		emp
Order Date	DR210223-030019 a: 2021-02-23 AABA372	Sampling Date: 2 Lab Batch Date: 2 Completion Date:	021-02-24	Initial Gross Weight: 122.400	g			
Д	Residual Solvents - Specimen Weight: 104.200 mg	FL (CBD)						Passed (GCMS)
Dilution Fac	tor: 1.000	Action Level	Result		LOQ	Action Level	Result	
Analyte	(ppm)	(ppm)	(ppm)	Analyte	(ppm)	(ppm)	(ppm)	
1,1-Dichlore Acetone	oethene 0.16 2.08	8 5000	<loq <loq< td=""><td>1,2-Dichloroethane Acetonitrile</td><td>0.04 1.17</td><td>5 410</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	1,2-Dichloroethane Acetonitrile	0.04 1.17	5 410	<loq <loq< td=""><td></td></loq<></loq 	
Benzene	0.02	2	<l0q< td=""><td>Butanes</td><td>2.5</td><td>2000</td><td><loq< td=""><td></td></loq<></td></l0q<>	Butanes	2.5	2000	<loq< td=""><td></td></loq<>	
Chloroform		60	<loq< td=""><td>Ethanol</td><td>2.78</td><td>5000</td><td><loq< td=""><td></td></loq<></td></loq<>	Ethanol	2.78	5000	<loq< td=""><td></td></loq<>	
Ethyl Aceta Ethylene O>		5000	<loq <loq< td=""><td>Ethyl Ether Heptane</td><td>1.39 1.39</td><td>5000 5000</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	Ethyl Ether Heptane	1.39 1.39	5000 5000	<loq <loq< td=""><td></td></loq<></loq 	
Hexane	1.17	290	<loq< td=""><td>Isopropyl alcohol</td><td>1.39</td><td>500</td><td><loq< td=""><td></td></loq<></td></loq<>	Isopropyl alcohol	1.39	500	<loq< td=""><td></td></loq<>	
Methanol	0.69	3000	<loq< td=""><td>Methylene chloride</td><td>2.43</td><td>600</td><td><l0q< td=""><td></td></l0q<></td></loq<>	Methylene chloride	2.43	600	<l0q< td=""><td></td></l0q<>	
Pentane Toluene	2.08 2.92	5000 890	<loq <loq< td=""><td>Propane Total Xylenes</td><td>5.83 2.92</td><td>2100 2170</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	Propane Total Xylenes	5.83 2.92	2100 2170	<loq <loq< td=""><td></td></loq<></loq 	
Trichloroet	hylene 0.49	80	<loq< td=""><td>-</td><td></td><td></td><td></td><td></td></loq<>	-				
UU	pH Level							Tested
	- Specimen Weight: N/A Dilution Fac	tor: 1.000						(pH Meter)
	Result							
Analyte	(pH)							
pH Level	4.0							
<i>d</i> aa	A. Gran	Nix						
	A Com	//						
Kueli Gao	A Grow Lab Toxicologist	Aixia Sun Lab [Director/Principal Scient	list				
		Aixia Sun Lab I D.H.Sc., M.Sc., B.Sc.,	Director/Principal Scient MT (AAB)					
(ueli Gao		Aixia Sun Lab I D.H.Sc., M.Sc., B.Sc., Definitions and Abbre CBG, *CBN Total = (C Total + THC Total + CI (mg/ml) = Milligrams Colony Forming Unit I	Director/Principal Scient MT (AAB) viations used in this report BNA * 0.877) + CBN, *Oth SC + CBDV + THCV + THCV per Milliliter, LOQ = Limit ser Gram (Grug) = Colony	t: *Total CBD = CBD + (CBD-A * 0.877), *Tota er Cannabinoids Total = CBC + CBDV + THCV ·A, *Analyte Details above show the Dry Weig of Quantitation, LOD = Limit of Detection, Dli Forming Unit per Gram, LOD = Limit of Dete	+ THCV-A, *Total De ht Concentrations un ition = Dilution Facto	tected Cannabinoid less specified as 1 or (ppb) = Parts pe	s = CBD Total + 0 2% moisture con r Billion, (%) = P	CBG Total + CBN incentration. ercent, (cfu/g) =
Kueli Gao Ph.D., DABT		Aixia Sun Lab I D.H.Sc., M.Sc., B.Sc., Definitions and Abbre CBG, *CBN Total = (C Total + THC Total + CI (mg/ml) = Milligrams Colony Forming Unit (µg/g), (aw) = aw (arc	Director/Principal Scient MT (AAB) viations used in this report BNA * 0.877) + CBN, *0th Sc + CBDV + THCV + THCV per Milliliter, LOQ = Limit per Gram (Grug) = Colony ar atio) = Area Ratio, (mg,	t: *Total CBD = CBD + (CBD-A * 0.877), *Tota er Cannabinoids Total = CBC + CBDV + THCV ·A, *Analyte Details above show the Dry Weig of Quantitation, LOD = Limit of Detection, Dil Forming Unit per Gram, LOD = Limit of Dete (Kg) = Milligram per Kilogram	+ THCV-A, *Total De ht Concentrations ur Ition = Dilution Facto ction, (μg/g) = Micro	tected Cannabinoid less specified as 1 or (ppb) = Parts pe ogram per Gram (p	s = CBD Total + (2% moisture con er Billion, (%) = Pe pm) = Parts per	CBG Total + CBN acentration. ercent, (cfu/g) = Million, (ppm) =
ueli Gao h.D., DABT		Aixia Sun Lab I D.H.Sc., M.Sc., B.Sc., Definitions and Abbre CBG, *CBN Total = (C Total + THC Total + CI (mg/ml) = Milligrams Colony Forming Unit i (ug/g), (aw) = aw (arr This report shall no analyzed. Test resu	Director/Principal Scient MT (AAB) viations used in this report BNA * 0.877) + CBN, * 0th SC + CBDV + THCV + THCV per Milliliter, LOQ = Limit ree Gram (cfu/g) = Colony ar atalo) = Area Ratio, (mg, the reproduced, without its are confidential unle	t: *Total CBD = CBD + (CBD-A * 0.877), *Tota er Cannabinoids Total = CBC + CBDV + THCV ·A, *Analyte Details above show the Dry Weig of Quantitation, LOD = Limit of Detection, Dli Forming Unit per Gram, LOD = Limit of Dete	+ THCV-A, *Total De ht Concentrations ur ution = Dilution Factor ction, (µg/g) = Micro (he results of this d by a third-party a	tected Cannabinoid less specified as 1 or (ppb) = Parts pe ogram per Gram (p report relate only	s = CBD Total + (2% moisture con r Billion, (%) = Po pm) = Parts per to the material	CBG Total + CBN acentration. ercent, (cfu/g) = Million, (ppm) = I or product

Page 4 of 4