

Kaycha Labs

CBD Hot Freeze Recovery Spray 4oz CBD Hot Freeze Recovery Spray 4oz Matrix: Infused Product

Sample:LA31127007-001 Harvest/Lot ID: 172311

> Laboratory License # CBD Sample Size Received: 1 units Retail Product Size: 113 gram

> > **Ordered:** 11/20/23 Sampled: 11/27/23 **Completed: 12/01/23**

> > > PASSED

Certificate of Analysis

Dec 01, 2023 | Inesscents Aromatic **Botanicals**

Pages 1 of 8

PRODUCT IMAGE

SAFETY RESULTS

Residuals Solvents PASSED

PASSED

Water Activity

Moisture

Testing NOT TESTED

MISC.

PASSED

1 unit= 1 CBD Hot Freeze Recover Spray 4 oz., 113.000g

Cannabinoid

Total THC

0.0080%Total THC/Container: 9.0400 mg

Total CBD

Total CBD/Container: 247.4700 mg

Total Cannabinoids

Total Cannabinoids/Container: 276.8500

													9			
	TOTAL CAN															
	NABINOIDS	CBDVA	CBDV	CBDA	CBGA	CBG	CBD	THCV	THCVA	CBN	D9-THC	D8-THC	CBL	THCA	CBC	CBCA
%	0.2450	<l00< th=""><th><l00< th=""><th>0.0100</th><th><l00< th=""><th>0.0040</th><th>0.2110</th><th><l00< th=""><th>0.0030</th><th><l0q< th=""><th>0.0080</th><th><l00< th=""><th><l00< th=""><th><l00< th=""><th>0.0120</th><th><l00< th=""></l00<></th></l00<></th></l00<></th></l00<></th></l0q<></th></l00<></th></l00<></th></l00<></th></l00<>	<l00< th=""><th>0.0100</th><th><l00< th=""><th>0.0040</th><th>0.2110</th><th><l00< th=""><th>0.0030</th><th><l0q< th=""><th>0.0080</th><th><l00< th=""><th><l00< th=""><th><l00< th=""><th>0.0120</th><th><l00< th=""></l00<></th></l00<></th></l00<></th></l00<></th></l0q<></th></l00<></th></l00<></th></l00<>	0.0100	<l00< th=""><th>0.0040</th><th>0.2110</th><th><l00< th=""><th>0.0030</th><th><l0q< th=""><th>0.0080</th><th><l00< th=""><th><l00< th=""><th><l00< th=""><th>0.0120</th><th><l00< th=""></l00<></th></l00<></th></l00<></th></l00<></th></l0q<></th></l00<></th></l00<>	0.0040	0.2110	<l00< th=""><th>0.0030</th><th><l0q< th=""><th>0.0080</th><th><l00< th=""><th><l00< th=""><th><l00< th=""><th>0.0120</th><th><l00< th=""></l00<></th></l00<></th></l00<></th></l00<></th></l0q<></th></l00<>	0.0030	<l0q< th=""><th>0.0080</th><th><l00< th=""><th><l00< th=""><th><l00< th=""><th>0.0120</th><th><l00< th=""></l00<></th></l00<></th></l00<></th></l00<></th></l0q<>	0.0080	<l00< th=""><th><l00< th=""><th><l00< th=""><th>0.0120</th><th><l00< th=""></l00<></th></l00<></th></l00<></th></l00<>	<l00< th=""><th><l00< th=""><th>0.0120</th><th><l00< th=""></l00<></th></l00<></th></l00<>	<l00< th=""><th>0.0120</th><th><l00< th=""></l00<></th></l00<>	0.0120	<l00< th=""></l00<>
70										•						
mg/g	2.450	<loq< th=""><th><loq< th=""><th>0.100</th><th><loq< th=""><th>0.040</th><th>2.110</th><th><loq< th=""><th>0.030</th><th><loq< th=""><th>0.080</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.120</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.100</th><th><loq< th=""><th>0.040</th><th>2.110</th><th><loq< th=""><th>0.030</th><th><loq< th=""><th>0.080</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.120</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.100	<loq< th=""><th>0.040</th><th>2.110</th><th><loq< th=""><th>0.030</th><th><loq< th=""><th>0.080</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.120</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.040	2.110	<loq< th=""><th>0.030</th><th><loq< th=""><th>0.080</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.120</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.030	<loq< th=""><th>0.080</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.120</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.080	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.120</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.120</th><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.120</th><th><loq< th=""></loq<></th></loq<>	0.120	<loq< th=""></loq<>
LOQ	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010
	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/
	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%

ibinoid analysis utilizing Ultra High Performance Liquid Chromatography with UV Detection (UHPLC-UV). Method SOP 300.23 for sample preparation and SOP 300.18b for analysis. Total THC = d8-THC + d9-THC + 0.877 * THCA, Total CBD = CBD + 0.877 * CBDA

Extraction date: 11/29/23 08:13:47 Analyzed by: 1525, 1590

Analysis Method: SOP 300.18b Analytical Batch: LA004163POT Instrument Used: LV-SHIM-002 Analyzed Date: 11/29/23 08:23:47

Dilution: 40 Reagent: 090523.07; 092823.R01 Consumables: 042c6; 265084 Pipette: LV-PIP-004; LV-PIP-023; LV-PIP-042 $\begin{array}{l} \textbf{Reviewed On:} \ 11/29/23 \ 11:45:51 \\ \textbf{Batch Date:} \ 11/28/23 \ 13:52:00 \\ \end{array}$

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request.The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Glen Marquez

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

Kaycha Labs

CBD Hot Freeze Recovery Spray 4oz CBD Hot Freeze Recovery Spray 4oz Matrix : Infused Product

PASSED

Certificate of Analysis

Inesscents Aromatic Botanicals

Sample : LA31127007-001 Harvest/Lot ID: 172311 Sampled: 11/27/23 Ordered: 11/27/23

Sample Size Received: 1 units Completed: 12/01/23 Expires: 12/01/24 Sample Method: SOP Client Method

Page 2 of 8

Terpenes

TESTED

Terpenes	LOQ (%)	mg/g	%	Result (%)	Terpene	S		LOQ (%)	mg/g	%	Result (%)
TOTAL TERPENES	0.0200	86.910	8.6910		ALPHA-PI	NENE		0.0200	<loq< th=""><th><loq< th=""><th></th></loq<></th></loq<>	<loq< th=""><th></th></loq<>	
HEXAHYDROTHYMOL	0.0200	82.900	8.2900		ALPHA-TE	RPINENE		0.0200	<loq< th=""><th><loq< th=""><th></th></loq<></th></loq<>	<loq< th=""><th></th></loq<>	
EUCALYPTOL	0.0200	1.820	0.1820		ALPHA-TE	RPINEOL		0.0200	<loq< th=""><th><loq< th=""><th></th></loq<></th></loq<>	<loq< th=""><th></th></loq<>	
BETA-CARYOPHYLLENE	0.0200	0.910	0.0910		BETA-MYI	CENE		0.0200	<loq< th=""><th><loq< th=""><th></th></loq<></th></loq<>	<loq< th=""><th></th></loq<>	
D-LIMONENE	0.0200	0.570	0.0570		CIS-NERO	LIDOL		0.0200	<loq< th=""><th><loq< th=""><th></th></loq<></th></loq<>	<loq< th=""><th></th></loq<>	
PULEGONE	0.0200	0.420	0.0420		DELTA-3-	CARENE		0.0200	<loq< th=""><th><loq< th=""><th></th></loq<></th></loq<>	<loq< th=""><th></th></loq<>	
BETA-PINENE	0.0200	0.290	0.0290		GAMMA-T	ERPINENE		0.0200	<loq< th=""><th><loq< th=""><th></th></loq<></th></loq<>	<loq< th=""><th></th></loq<>	
BORNEOL	0.0200	<loq< th=""><th><loq< th=""><th></th><th>GAMMA-T</th><th>ERPINEOL</th><th></th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th></th><th>GAMMA-T</th><th>ERPINEOL</th><th></th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th></loq<></th></loq<></th></loq<>		GAMMA-T	ERPINEOL		0.0200	<loq< th=""><th><loq< th=""><th></th></loq<></th></loq<>	<loq< th=""><th></th></loq<>	
CAMPHENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th>TRANS-NI</th><th>ROLIDOL</th><th></th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th></th><th>TRANS-NI</th><th>ROLIDOL</th><th></th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th></loq<></th></loq<></th></loq<>		TRANS-NI	ROLIDOL		0.0200	<loq< th=""><th><loq< th=""><th></th></loq<></th></loq<>	<loq< th=""><th></th></loq<>	
CAMPHOR	0.0200	<loq< th=""><th><loq< th=""><th></th><th>Analyzed by</th><th>:</th><th>Weight:</th><th>Ex</th><th>traction</th><th>date:</th><th>Extracted by:</th></loq<></th></loq<>	<loq< th=""><th></th><th>Analyzed by</th><th>:</th><th>Weight:</th><th>Ex</th><th>traction</th><th>date:</th><th>Extracted by:</th></loq<>		Analyzed by	:	Weight:	Ex	traction	date:	Extracted by:
CARYOPHYLLENE OXIDE	0.0200	<loq< th=""><th><loq< th=""><th></th><th>879, 1590,</th><th>880</th><th>0.9729g</th><th>1:</th><th>L/30/23 1</th><th>0:44:47</th><th>879</th></loq<></th></loq<>	<loq< th=""><th></th><th>879, 1590,</th><th>880</th><th>0.9729g</th><th>1:</th><th>L/30/23 1</th><th>0:44:47</th><th>879</th></loq<>		879, 1590,	880	0.9729g	1:	L/30/23 1	0:44:47	879
CEDROL	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th>thod: SOP.T.30.</th><th></th><th>.40.061</th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th>thod: SOP.T.30.</th><th></th><th>.40.061</th><th></th><th></th><th></th></loq<>			thod: SOP.T.30.		.40.061			
FARNESENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th>atch: LA004167 Used: LV-GCMS-</th><th></th><th></th><th></th><th></th><th>: 12/01/23 07:22:31 l1/28/23 18:47:16</th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th>atch: LA004167 Used: LV-GCMS-</th><th></th><th></th><th></th><th></th><th>: 12/01/23 07:22:31 l1/28/23 18:47:16</th></loq<>			atch: LA004167 Used: LV-GCMS-					: 12/01/23 07:22:31 l1/28/23 18:47:16
FENCHONE	0.0200	<loq< th=""><th><loq< th=""><th></th><th>Analyzed Da</th><th></th><th>002</th><th></th><th>Batt</th><th>ii Date</th><th>11/20/23 10.47.10</th></loq<></th></loq<>	<loq< th=""><th></th><th>Analyzed Da</th><th></th><th>002</th><th></th><th>Batt</th><th>ii Date</th><th>11/20/23 10.47.10</th></loq<>		Analyzed Da		002		Batt	ii Date	11/20/23 10.47.10
FENCHYL ALCOHOL	0.0200	<loq< th=""><th><loq< th=""><th></th><th>Dilution: 1</th><th>)</th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th>Dilution: 1</th><th>)</th><th></th><th></th><th></th><th></th><th></th></loq<>		Dilution: 1)					
GERANIOL	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th>01223.01; 10122</th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th>01223.01; 10122</th><th></th><th></th><th></th><th></th><th></th></loq<>			01223.01; 10122					
GERANYL ACETATE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th>s : 042c6; 26266 -PIP-027; LV-PIP-</th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th>s : 042c6; 26266 -PIP-027; LV-PIP-</th><th></th><th></th><th></th><th></th><th></th></loq<>			s : 042c6; 26266 -PIP-027; LV-PIP-					
GUAIOL	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th>nataaranl</th><th>or with no</th><th>acc consets</th><th>ometry following SOP.T.30.061.NV and</th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th>nataaranl</th><th>or with no</th><th>acc consets</th><th>ometry following SOP.T.30.061.NV and</th></loq<>					nataaranl	or with no	acc consets	ometry following SOP.T.30.061.NV and
ISOBORNEOL	0.0200	<loq< th=""><th><loq< th=""><th></th><th>SOP.T.40.061</th><th></th><th>using gas critor</th><th>natograpi</th><th>iy with in</th><th>ass specin</th><th>briedy following SOP.1.SU.061.NV and</th></loq<></th></loq<>	<loq< th=""><th></th><th>SOP.T.40.061</th><th></th><th>using gas critor</th><th>natograpi</th><th>iy with in</th><th>ass specin</th><th>briedy following SOP.1.SU.061.NV and</th></loq<>		SOP.T.40.061		using gas critor	natograpi	iy with in	ass specin	briedy following SOP.1.SU.061.NV and
ISOPULEGOL	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>								
LINALOOL		<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>								
NEROL		<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>								
OCIMENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>								
SABINENE		<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>								
SABINENE HYDRATE	0.0200		<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>								
TERPINOLENE	0.0200		<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>								
VALENCENE	0.0200		<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>								
ALPHA-BISABOLOL	0.0200		<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>								
ALPHA-CEDRENE		<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>								
ALPHA-HUMULENE		<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>								
ALPHA-PHELLANDRENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>								
Total (%)			8.6910								

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

Glen Marquez

Lab Director

Kaycha Labs

CBD Hot Freeze Recovery Spray 4oz CBD Hot Freeze Recovery Spray 4oz Matrix : Infused Product

PASSED

Certificate of Analysis

Sample: LA31127007-001 Harvest/Lot ID: 172311 Sampled: 11/27/23

Ordered: 11/27/23

Sample Size Received: 1 units Completed: 12/01/23 Expires: 12/01/24 Sample Method: SOP Client Method

Page 3 of 8

Pesticides

	P	A	S	S	E	
--	---	---	---	---	---	--

esticide	LOQ	Units	Action Level	Pass/Fail	Result	Pesticide		LOQ	Units	Action Level	Pass/Fail	Result
BAMECTIN	0.0500		0.0001	PASS	<loq< td=""><td>CYPERMETHRIN *</td><td></td><td>0.0500</td><td>ppm</td><td>0.0001</td><td>PASS</td><td><loq< td=""></loq<></td></loq<>	CYPERMETHRIN *		0.0500	ppm	0.0001	PASS	<loq< td=""></loq<>
CEQUINOCYL	0.0500		4	PASS	<loq< td=""><td>CYFLUTHRIN *</td><td></td><td>0.0500</td><td>ppm</td><td>2</td><td>PASS</td><td><loq< td=""></loq<></td></loq<>	CYFLUTHRIN *		0.0500	ppm	2	PASS	<loq< td=""></loq<>
IFENAZATE	0.0500		0.4	PASS	<loq< td=""><td>PENTACHLORONITROBENZENE (PCNB) *</td><td></td><td>0.0500</td><td>ppm</td><td>0.8</td><td>PASS</td><td><l00< td=""></l00<></td></loq<>	PENTACHLORONITROBENZENE (PCNB) *		0.0500	ppm	0.8	PASS	<l00< td=""></l00<>
IFENTHRIN	0.0500	ppm	0.0001	PASS	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>							
AMINOZIDE	0.0500	ppm	0.0001	PASS	<loq< td=""><td>Analyzed by: 888, 1590</td><td>Weight: NA</td><td>Extraction N/A</td><td>on date:</td><td></td><td>Extracted by: N/A</td><td></td></loq<>	Analyzed by: 888, 1590	Weight: NA	Extraction N/A	on date:		Extracted by: N/A	
IMETHOMORPH	0.0500	ppm	2	PASS	<loq< td=""><td>Analysis Method : SOP.T.30.101.NV; SOP.</td><td></td><td>NA</td><td></td><td></td><td>N/A</td><td></td></loq<>	Analysis Method : SOP.T.30.101.NV; SOP.		NA			N/A	
TOXAZOLE	0.0500	ppm	0.4	PASS	<loq< td=""><td>Analytical Batch : LA004153PES</td><td>1.40.101.144</td><td></td><td>Reviewed O</td><td>n:11/30/23 14:11:</td><td>56</td><td></td></loq<>	Analytical Batch : LA004153PES	1.40.101.144		Reviewed O	n:11/30/23 14:11:	56	
ENHEXAMID	0.0500	ppm	1	PASS	<loq< td=""><td>Instrument Used : Shimadzu LCMS-8060</td><td></td><td></td><td></td><td>:11/27/23 12:29:24</td><td></td><td></td></loq<>	Instrument Used : Shimadzu LCMS-8060				:11/27/23 12:29:24		
ENOXYCARB	0.0500	ppm	0.0001	PASS	<loq< td=""><td>Analyzed Date: 11/28/23 08:06:53</td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>	Analyzed Date: 11/28/23 08:06:53						
LONICAMID	0.0500	ppm	1	PASS	<loq< td=""><td>Dilution: N/A</td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>	Dilution: N/A						
LUDIOXONIL	0.0500	ppm	0.5	PASS	<loq< td=""><td>Reagent: N/A</td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>	Reagent: N/A						
IIDACLOPRID	0.0500	ppm	0.5	PASS	<loq< td=""><td>Consumables: 042c6; 265084</td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>	Consumables: 042c6; 265084						
IYCLOBUTANIL	0.0500	ppm	0.4	PASS	<loq< td=""><td>Pipette: LV-PIP-028; LV-PIP-021; LV-PIP-03</td><td></td><td></td><td>- C</td><td>. D. t ti - 1 f</td><td></td><td></td></loq<>	Pipette: LV-PIP-028; LV-PIP-021; LV-PIP-03			- C	. D. t ti - 1 f		
IPERONYL BUTOXIDE	0.0500	ppm	3	PASS	<loq< td=""><td>Pesticide screening is performed using LC-M: SOP.T.30.101.NV and SOP.T.40.101.NV.</td><td>(Liquid Chromatograph</td><td>iy with mas</td><td>s Spectrometr</td><td>y Detection) for regu</td><td>lated pesticides io</td><td>ollowing</td></loq<>	Pesticide screening is performed using LC-M: SOP.T.30.101.NV and SOP.T.40.101.NV.	(Liquid Chromatograph	iy with mas	s Spectrometr	y Detection) for regu	lated pesticides io	ollowing
ACLOBUTRAZOL	0.0500	ppm	0.0001	PASS	<loq< td=""><td>Analyzed by:</td><td>Weight:</td><td>Extraction</td><td>on date:</td><td></td><td>Extracted by:</td><td></td></loq<>	Analyzed by:	Weight:	Extraction	on date:		Extracted by:	
YRETHRINS	0.0500	ppm	2	PASS	<loq< td=""><td>888, 1590</td><td>NA</td><td>N/A</td><td>on dute.</td><td></td><td>N/A</td><td></td></loq<>	888, 1590	NA	N/A	on dute.		N/A	
PINETORAM	0.0500	ppm	1	PASS	<loq< td=""><td>Analysis Method : SOP.T.30.151.NV; SOP.</td><td>Γ.40.151.NV</td><td></td><td></td><td></td><td></td><td></td></loq<>	Analysis Method : SOP.T.30.151.NV; SOP.	Γ.40.151.NV					
PINOSAD	0.0500	ppm	1	PASS	<loq< td=""><td>Analytical Batch : LA004155VOL</td><td></td><td></td><td></td><td>30/23 15:16:57</td><td></td><td></td></loq<>	Analytical Batch : LA004155VOL				30/23 15:16:57		
PIROTETRAMAT	0.0500	ppm	1	PASS	<loq< td=""><td>Instrument Used : N/A</td><td></td><td>Batch</td><td>Date:11/27</td><td>/23 12:34:08</td><td></td><td></td></loq<>	Instrument Used : N/A		Batch	Date:11/27	/23 12:34:08		
HIAMETHOXAM	0.0500	ppm	0.4	PASS	<loq< td=""><td>Analyzed Date: 11/28/23 08:32:29</td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>	Analyzed Date: 11/28/23 08:32:29						
RIFLOXYSTROBIN	0.0500	ppm	1	PASS	<l0q< td=""><td>Dilution: N/A Reagent: N/A Consumables: 042c6; 265084</td><td></td><td></td><td></td><td></td><td></td><td></td></l0q<>	Dilution: N/A Reagent: N/A Consumables: 042c6; 265084						

Pipette: LV-PIP-001; LV-PIP-029; LV-PIP-025

GC (Gas Chromatography with Mass Spectrometry Detection) for regulated pesticides following SOP.T.30.151.NV resticide screening is po and SOP.T.40.151.NV.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Glen Marquez

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

Kaycha Labs

CBD Hot Freeze Recovery Spray 4oz
CBD Hot Freeze Recovery Spray 4oz

Hot Freeze Recovery Spray 4oz

Matrix : Infused Product

Certificate of Analysis

PASSED

Inesscents Aromatic Rotanicals

Sample : LA31127007-001 Harvest/Lot ID: 172311 Sampled : 11/27/23

Sampled: 11/27/23 Sample Size Received: 1 units
Ordered: 11/27/23 Completed: 12/01/23 Expires: 12/01/24
Sample Method: SOP Client Method

Page 4 of 8

Residual Solvents

PASSED

Solvents	LOQ	Units	Action Level	Pass/Fail	Result
PROPANE	50.0000	ppm	499.5	PASS	<loq< th=""></loq<>
BUTANES	100.0000	ppm	499.5	PASS	<loq< th=""></loq<>
HEPTANE	50.0000	ppm	499.5	PASS	<loq< th=""></loq<>
ETHANOL	100.0000	ppm		TESTED	<loq< th=""></loq<>

Reviewed On: 11/30/23 16:19:26 **Batch Date:** 11/29/23 20:19:32

 Analyzed by:
 Weight:
 Extraction date:
 Extracted by:

 879, 1590
 0.0185g
 11/30/23 16:04:55
 879

Analysis Method : SOP.T.40.041.NV Analytical Batch : LA004172SOL Instrument Used : LV-GCMS-001 Analyzed Date : N/A

Reagent: 041420.01; 082123.29; 101421.01

Consumables : N/A

Dilution: N/A

Pipette: 25C, Hamilton Gastight syringe, 25uL; GT6, Hamilton Gastight Syringe, 10 ul

Residual solvent screening is performed by Headspace Gas Chromatography with Mass spectrometry following SOP.T.40.041.NV.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request.The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Glen Marquez

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

Kaycha Labs

CBD Hot Freeze Recovery Spray 4oz CBD Hot Freeze Recovery Spray 4oz

Matrix: Infused Product

Certificate of Analysis

PASSED

Sample : LA31127007-001 Harvest/Lot ID: 172311 Sampled: 11/27/23 Ordered: 11/27/23

Sample Size Received: 1 units Completed: 12/01/23 Expires: 12/01/24 Sample Method : SOP Client Method

Page 5 of 8

Reviewed On: 11/30/23 15:20:51

Batch Date: 11/27/23 12:31:13

Microbial

Reviewed On:

19:00:35

11/30/23 16:04:55

Batch Date : 11/27/23

oxins

PASSED

Analyte	LOQ	Units	Result	Pass / Fail	Action Level
SALMONELLA			Not Present	PASS	
STEC			Not Present	PASS	
ENTEROBACTERIACEAE	100	cfu/g	ND	PASS	999
YEAST AND MOLD	1000	cfu/g	ND	TESTED	

Analyzed by: Weight: 1.0758g Extraction date: Extracted by: 1662, 1590 11/28/23 13:16:41

Analysis Method: SOP 300.1 Analytical Batch: LA004160MIC

Instrument Used: PCR-001 (Rosalind) (SAL/STEC), PCR-002 (Mullis) (SAL/STEC),LV-PCR-003A (Gene-Up) (Asp),LV-HOOD-3,LV-HOOD-4,LV-HOOD-5

Analyzed Date: N/A

Dilution: N/A

Reagent: 112523.R05; 110923.R08

Consumables: 64546586; 64529385; ASP1689; CSS0004707 Pipette: LV-PIP-017; LV-PIP-026; LV-PIP-019; LV-PIP-034; LV-PIP-046

Analyzed by:	Weight:	Extraction date:	Extracted by:
1396, 1662, 1590, 1663	1.0758g	11/28/23 12:25:52	1663

Analysis Method: SOP 300.1 Analytical Batch: LA004162TYM Reviewed On: 11/30/23 16:05:2
Instrument Used: Micro plating with Flower, Edibles, TincturesBatch Date: 11/28/23 12:08:31 **Reviewed On:** 11/30/23 16:05:28Standard Dilutions

Analyzed Date: N/A Dilution : N/A Reagent: 112523.R06

Consumables: 33MTTR: 418323060A: 418323077C: 33MC6D

Pipette: LV-PIP-017; LV-PIP-019

Microbial testing is performed by a combination of agar and Petrifilm plating as well as PCR (Polymerase Chain Reaction) to test for Mold/Yeast, Total Aerobic Count, Enterobacteria, Coliforms, Salmonella, Pathogenic E Coli, and Aspergillus

Ů.	Mycoto
----	--------

Analyte			LOQ	Units	Result	Pass / Fail	Action Level
TOTAL AFLATOX OCHRATOXIN A	INS (B1, B2, G1,	G2)	0.0050 0.0050	1. 1.	<l0q <l0q< th=""><th></th><th>0.02 0.02</th></l0q<></l0q 		0.02 0.02
Analyzed by:	Weight:	Extrac	tion date	:	Extra	acted by:	

Analysis Method: 300.2

Analytical Batch : LA004154MYC Instrument Used : N/A Analyzed Date: N/A

Dilution: N/A

Reagent: N/A Consumables: 042c6; 265084

Pipette: LV-PIP-004; LV-PIP-030; LV-PIP-009

Total Aflatoxins B1, B2, G1, G2, and Ochratoxin A screening are performed by ELISA (Enzyme Linked

Heavy Metals

PASSED

Metal		LOQ	Units	Result	Pass / Fail	Action Level
ARSENIC CADMIUM		0.1670	ppm	<l0q< th=""><th>PASS</th><th>2</th></l0q<>	PASS	2
CADMIUM		0.1670	ppm	<l0q< th=""><th>PASS</th><th>0.82</th></l0q<>	PASS	0.82
LEAD		0.1670	ppm	<l0q< th=""><th>PASS</th><th>1.2</th></l0q<>	PASS	1.2
MERCURY		0.1670	ppm	<loq< th=""><th>PASS</th><th>0.4</th></loq<>	PASS	0.4
Analyzed by: 879, 1590	Weight: 0.5133g	Extraction date: 11/28/23 16:46:	38		xtracted 387	by:

Analysis Method : SOP.T.30.081.NV; SOP.T.40.081.NV

Analytical Batch : LA004166HEA Reviewed On: 11/30/23 08:20:12 Instrument Used : ICPMS-2 Shimadzu Batch Date: 11/28/23 16:41:19

Analyzed Date : N/ADilution: 50

Reagent: 062823.01; 103023.R10; 081423.48; 010120.01 Consumables: 042c6; 251697

Pipette: LV-BTD-020; LV-BTD-019

Heavy Metals screening is performed using ICP-MS (Inductively Coupled Plasma - Mass Spectrometry) using method SOP.T.30.081.NV and SOP.T.40.081.NV.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Glen Marquez

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

Kaycha Labs

CBD Hot Freeze Recovery Spray 4oz CBD Hot Freeze Recovery Spray 4oz Matrix : Infused Product

PASSED

Certificate of Analysis

Inesscents Aromatic Rotanicals

Sample : LA31127007-001 Harvest/Lot ID: 172311 Sampled : 11/27/23 Ordered : 11/27/23

Sample Size Received: 1 units Completed: 12/01/23 Expires: 12/01/24 Sample Method: SOP Client Method Page 6 of 8

Filth/Foreign Material

PASSED

Analyte Filth and Foreign Material		LOQ	Units detect/g	Result <loq< th=""><th>P/F PASS</th><th>Action Level 0.001</th></loq<>	P/F PASS	Action Level 0.001
Analyzed by: N/A	Weight: NA	Ext N/A	raction date		Extrac N/A	ted by:
Analysis Method: 300. Analytical Batch: N/A Instrument Used: N/A Analyzed Date: N/A	10		viewed On :	, , ,	5:57:24	
Dilution: N/A Reagent: N/A Consumables: N/A Pipette: N/A						

Samples are visually screened for foreign matter (hair, insects, packaging materials, etc.). For flower, stems >3 mm in diameter may only make up <5% of the sample.

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

Kaycha Labs

CBD Hot Freeze Recovery Spray 4oz CBD Hot Freeze Recovery Spray 4oz

Matrix: Infused Product

PASSED

Certificate of Analysis

Sample : LA31127007-001 Harvest/Lot ID: 172311 Sampled: 11/27/23 Ordered: 11/27/23

Sample Size Received: 1 units Completed: 12/01/23 Expires: 12/01/24 Sample Method: SOP Client Method

Page 7 of 8

COMMENTS

* Confident Cannabis sample ID: 2311DBL0060.2073

* Terpene LA31127007-001TER

1 - The farnesene value reported is semi-quantitative due to unknown isomer purity from the Certified Reference Material manufacturer.

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

Las Vegas, NV, 89103, US (702) 728-5180

Kaycha Labs

CBD Hot Freeze Recovery Spray 4oz CBD Hot Freeze Recovery Spray 4oz Matrix : Infused Product

PASSED

Certificate of Analysis

Sample: LA31127007-001 Harvest/Lot ID: 172311 Sampled: 11/27/23 Ordered: 11/27/23

Sample Size Received: 1 units Completed: 12/01/23 Expires: 12/01/24 Sample Method: SOP Client Method

Page 8 of 8

COMMENTS

* Confident Cannabis sample ID: 2311DBL0060.2073

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Glen Marquez

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

